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ABSTRACT 

Design values of local ice pressure may govern the member sizing of an arctic structure that is 

subject to ice actions. Although the local pressure-area relationships are provided in some 

design codes (e.g. ISO 19906:2012), questions remain on how to apply such a relationship to 

a structural design process, which often utilizes finite element method. 

In this paper, a structural reliability-based approach is proposed to define the design local 

pressure distributions associated with the structural members under design. The local 

pressures are treated as random processes with pre-defined correlation functions. These 

random processes are transferred to a new set of independent processes to enable the Monte 

Carlo simulations (MCS). The First-Order Reliability Method (FORM) and Second-Order 

Reliability Method (SORM) can then be applied to define the design pressure distributions. 

Finally, this new approach is illustrated in an example using beam finite element. 

 

INTRODUCTION 

Design values of local ice pressure may govern the member sizing of an arctic structure that is 

subject to ice actions. As a result, they often drive the weight of the primary steel or outer 

shell of the structure, and its fabrication/installation costs.  

In order to obtain realistic values of local ice pressure representative of the field conditions, 

researchers in the past (e.g., Iyer and Masterson, 1987; Masterson et al., 1992) used indenters 

in the field to measure the local pressure in highly confined conditions. Masterson and 

Frederking (1993) compiled the results from the indentation tests and from ship trials. They 

observed an inverse relationship between area (A) and local pressure (p). They proposed the 

following formula as an upper bound of the field data: 
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This pressure-area relationship was adopted in the CSA S-471 code on loadings on offshore 

structures and in the API PR2N offshore structure code. 

Recently, Masterson et al. (2007) revised the CSA S-471 pressure-area relationship by 

excluding ship impact tests and including additional data from the Molikpaq measurements in 

the Beaufort Sea. They proposed the following formula as an upper bound of the field data: 
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This revised pressure-area relationship was adopted for thick, massive ice features in the new 

ISO 19906:2010(E) code for arctic offshore structures. Interestingly, the ISO pressure-area 

relationship is three times standard deviation from the mean values while the CSA 

relationship is two times standard deviation from the mean values although the ISO 

relationship yields lower pressure for areas larger than 0.65 m
2
. This inconsistency reflects the 

importance of the data selection for the statistical analysis.  

ISO 19906 provides the following requirements on contact area considerations in Subsection 

8.2.5: 

“Design contact areas shall be considered based on the local structural configuration, 

including frame spacing, plate thickness and appendage dimensions. The size and 

placement of the local contact areas shall be selected to ensure that the most critical 

cases are addressed. 

Local ice actions shall be considered in the context of background actions on 

adjacent panels or areas of the structure.” 

However, there is no guidance in ISO 19906 on how to select the most critical cases of the 

size and placement of the local contact areas. It is also unclear what pressure values should be 

chosen on the adjacent panels or areas. Structure designers face the dilemma of having to 

come up with a scantling design (frame spacing, plate thickness, etc.) against potentially 

infinite number of pressure and area combinations. 

ISO 19906 also permits probabilistic local design for thick, massive ice features based on data 

from ship impacts with multi-year ice floes (Jordaan et al., 1993). The probability distribution 

of the local peak pressure can be modelled as a function of exposure and contact area. Brown 

(1996) used such an approach to optimize the bow plating by considering the uncertainties in 

local ice pressure (treated as a single random variable) and structural properties. However, a 

designer still faces the issue of choosing the most critical cases of the size and placement of 

the local contact areas.  

In order to close this gap between ice engineering and structural engineering, a structural 

reliability-based approach is proposed in this paper. A framework to evaluate the reliabilities 

of structural members under local ice actions is presented next. Then, a simple example using 

beam finite element is provided as an illustration of this framework. Finally, remaining works 

for future improvements are discussed. 

A RELIABILITY-BASED FRAMEWORK 

An offshore structure located in the arctic may be subject to multiple ice interactions each 

year. In each loading event, the local pressure for a given area is stochastic in nature and 

varies as a function of time, i.e. a random process. For any given time, the pressure for the 

given area can be modelled as a random variable and the pressures for the given area and its 

surrounding areas can be modelled as a random field. This idea is illustrated in Figure 1 where 

Zone 1 is the given area.  

Zone 9 Zone 2 Zone 3 

Zone 8 Zone 1 Zone 4 

Zone 7 Zone 6 Zone 5 

Figure 1 Pressure Zones  



A statistical model can be used to describe the random pressure field with the pressure-area 

relationship implicitly built into this statistical model. For example, Spencer and Morrison 

(2012) proposed a statistical model that can reproduce the ISO formulation of global ice 

pressure as a function of structure width and ice thickness. For the panel size of 0.5m x 0.5m, 

they modelled the pressure variable with a mean of 0.85 MPa and a standard deviation of 2 

MPa. Pressures of adjacent and non-adjacent panels were modelled with a correlation function 

following the power law. 

To generalize, a vector � = �P� P� ⋯ P�		
� is used to represent the ice pressures in n 

zones of interest. The pressure in each zone is modelled as a stationary random process with 

its mean and standard deviation.  If we subtract its mean value from each pressure process and 

then normalize it against its standard deviation, we can obtain a new zero-mean, unit-variance 

vector X; i.e. 

� = 
������� ⋯ ������� �� = ���	(� −�)   (3) 

Where m is the mean vector and � is a sparse matrix with all its non-zero elements of σ� ⋯ σ� in its main diagonal.  

The correlation matrix of X is the same as the one of P and is defined as the following: 

�� ≡ E��	��
 = � 1 ⋯ c��⋮ ⋱ ⋮c�� ⋯ 1 $	 	 	 (4)	
The means and standard deviations of local ice pressure, as well as the correlation matrix ��, 

are obtained by analyses of field or test data. For example, Taylor (2010) calculated the 

correlation coefficients of ice pressures (shown in Figure 2) based on JOIA data. 

 

Figure 2 Correlation coefficient matrix contour plot (Taylor, 2010) 

 



Monte Carlo Simulation (MCS) Approach 

In theory, a structural analyst can simulate the correlated local pressure field as functions of 

time, and then apply the time histories of the ice pressure to the structural model to obtain the 

structural responses. Through MCS, the analyst can then calculate the reliability of the given 

structural design. As discussed earlier, the statistical model describing the pressure field 

ensures that the pressure-area relationship is satisfied implicitly. The load panel size can be 

reduced iteratively until the calculated reliability values converge. 

In order to simulate the correlated pressure field, a vector of zero-mean, unit-variance vector 

independent random processes is simulated first. This vector, denoted as U, is transformed 

into the vector X by the following equation  

� = &	'    (5) 

where & is the transformation matrix. 

Plugging Eq. 5 into Eq. 4 one obtains the following: 

�� ≡ (�&	'	')&)
 = &	&)  (6) 

There are many possible solutions of the transformation matrix & based on the equation 

above. In order to facilitate the solution, the transformation matrix & is limited to the 

following structure 

& =
**
**
+,�� 0 0 ⋯ 0,�� ,�� 0 … 0,/� ,/� ,// ⋱ ⋮⋮ ⋮ ⋮ ⋱ 0,0� ,0� ,0/ ⋯ ,0011

11
2
           (7) 

Eq. 6 can then be solved by solving each element in the transformation matrix & from top to 

bottom and from right to left in the sequence of ,�� → ,�� → ,�� → ,/� … 

Structural Reliability Approach 

If the finite element method (FEM) is used for structural design, the MCS approach outlined 

previously will require a large computational effort and may become impractical due to time 

and resource constraints. Therefore, we examine some special cases where there are 

numerically efficient approaches.  

If the pressure vector P is Gaussian, then the zero-mean, unit-variance vector U is also 

Gaussian. For this special case and the case of independent pressure vector P, the FORM 

(first-order reliability method) and SORM (second-order reliability method) approaches 

(Ditlevsen and Madsen, 1996) can be easily applied and are very numerically efficient. The 

limit state function is numerically defined by the FE model for the structural design. 

Application of the FORM or SORM numerically will yield a design point 45, a reliability 

index 6 and a unit vector 7. The design point 45 is the closest point to the origin on the limit 

state surface in the U space, and the reliability index 6 is the distance from the origin to the 

design point. Physically, the design point represents the pressure combination that is the most 

likely to reach the limit of the structural capacity. The unit vector 7 points towards the design 

point from the origin. Projection of the vector U onto the unit vector 7 yields a new random 

process, denoted as reliability-weighted normalized pressure 89, i.e. 

89 = 7)	'    (8) 

If at any time instance the value of 89 is equal or greater than the reliability index 6, the 

structural capacity is then reached or exceeded. The probability of the reliability-weighted 
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can be used (at least in theory) to assess the structural reliability. For special cases of 

uncorrelated pressures between load zones and of Gaussian pressure processes, numerically 

efficient reliability methods (FORM and SORM) can be used for the assessment. The concept 

of reliability-weighted normalized pressure is proposed to account for the time-varying nature 

of the pressure field. 

The earlier example shows that insufficient number of load zones can significantly 

underestimate the failure probability since the design pressure distribution cannot be 

adequately captured by insufficient number of load panels. On the other hand, the structural 

reliability assessment converges with sufficient number of load panels. Also, the design 

pressure distribution depends on the selected limit state of the structure. 

In order to adopt the proposed framework to guide structural design, the following items 

should be addressed.  

1. An effective statistical representation of the random ice pressure field needs to be 

developed. Correlations between different pressure zones should be investigated. As 

shown in Figure 3, assumption of independence yields an exponent of -0.5 in the 

pressure-area relationship, which is likely conservative for design. 

2. Statistical distribution of the underlying pressure processes need to be investigated. 

Distributions, besides Gaussian, may be used due to the unsymmetrical nature of the 

processes with respect to their mean values. 

3. Other statistical properties of the pressure processes, e.g. bandwidth, number of peaks, 

and peak distributions, need to be analyzed. Jordaan (1993) proposed exponential or 

Gumbel distributions for the pressure peaks depending on the loading duration. The 

peak distribution needs to be consistent with the underlying processes in order to adopt 

this reliability framework. 

4. The structural reliability and design pressure distribution depend on the selected limit 

state of the structure. Elastic limit states may be too conservative and costly given the 

large surface area of a GBS in the arctic. Some yielding should be allowed if the 

structural material is ductile. 

5. For simplicity, the earlier example did not consider the uncertainties associated with 

the structure member, e.g. dimensions and mechanical properties. Future work should 

include these uncertainties to assess the structural reliability properly and to optimize 

the structure design (Brown, 1996). The proposed framework can be used to calibrate 

load and resistance factors for LRFD approach. 
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