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ABSTRACT  

We simulated the ice-structure interaction process using 2D FEM-DEM. The simulations are 
deterministic, but sensitive to initial conditions. Ice loads statistics from three sets of 50 
simulations were considered. The sets differed by ice crushing strength. In two set the ice sheet 
was homogeneous and in one set the crushing strength of ice varied. In simulations with 
homogeneous ice sheets the initial condition varied causing different load records. In the case 
of the non-homogenous ice sheets, variation in load records came directly through the non- 
homogeneity of the sheet. Our core result is that the stochastic nature of ice loads could be due 
to the non-homogeneity of sea ice, but virtually as much variation in the data was observed 
with homogenous ice sheets. This suggests that the variability in the ice loads was mainly 
caused by the ice-structure interaction process instead of the non-homogeneity of ice. 

 

INTRODUCTION  

Arctic marine operations increase continuously. This includes developments in Northern sea 
transportation, offshore drilling operations, and offshore wind energy. One of the key factors 
in developing safe Arctic operations is a reliable prediction of sea ice loads, which are induced 
by ice-structure interaction process. Here we focus on on the statistics of the ice loads induced 
by an ice-inclined structure interaction processes by studying these processes using 2D 
combined finite-discrete element method simulations (2D FEM-DEM). We investigate where 
the well- known stochastic nature of ice loads (Daley et al., 1998; Jordaan, 2001) arises from. 
Often this stochasticity is assumed to be due to the inhomogeneity of ice.  

Our 2D FEM-DEM simulations of the ice-structure interaction process are deterministic, but 
we know that the process is very sensitive to its initial conditions (Ranta et al., 2017a). Here 
we used this sensitivity to create sets of simulations using the same simulation parameters, but 
different initial conditions. For a set of simulations, we conducted 50 simulations with constant 
parameters, but varying vertical initial velocity v0 at the free end of the ice sheet (see Figure 

1). This 𝑣" was given a random value of the order of 10−9 mms−1. This was enough to cause 
different ice failure processes. After this we ran one more set of 50 simulations where the ice 
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sheet was non-homogenous. This gave us data on the processes in the case of non-homogenous 
ice (vertical initial velocity 𝑣" was zero in these simulations).  

The core finding here is that, the stochastic nature of ice loads could be due to non-homogeneity 
of sea ice, but it can as well simply arise from the ice-structure interaction process itself. The  

 

Figure 1: (a) Simulation set-up: A floating ice sheet (dark grey) is pushed with a velocity of 𝑣 
= 50 mms−1 towards an inclined (α = 70◦) structure (black). The water is colored light gray. A 
perturbation for the initial conditions was created by giving a low vertical velocity 𝑣" for the 
free end of the ice sheet. 𝑣" was of the order of 10−9 mms−1 and varied randomly between 
all simulations. (b) A snapshot from a simulation at a stage where the length of the pushed ice 
𝐿 = 125 m. Ice thickness ℎ = 1.25 m and plastic limit σp = 1 MPa. 

ice-structure interaction process is itself a stochastic process. We will first describe the 
simulation tools. After this we present our results, and analyze and discuss them. We look into 
the peak load statistics and compare the processes that have homogenous ice sheets to those 
which have a non-homogenous sheets. We conclude the paper with some remarks on our work.  
 

SIMULATIONS  

The 2D FEM-DEM simulation tools we used are the same as used in Paavilainen et al. (2009, 
2011), Paavilainen and Tuhkuri (2012, 2013), and Ranta et al. (2017a). We use the 2D FEM- 
DEM code of Aalto University Ice Mechanics Group. The DEM part of the code follows the 
model by Hopkins (1992) while Paavilainen et al. (2009) developed the FEM-DEM 
Timoshenko beam model for the ice sheet. The model was validated in Paavilainen et al. (2009, 
2011) against laboratory and full-scale measurements on ice loads. Polojärvi et al. (2015) 
successfully used the DEM part for modeling direct shear box tests on ice rubble.  

Figure 1 illustrates the simulations. We have a floating, homogenous and continuous ice sheet 
pushed against an inclined rigid structure with constant velocity v. The initially intact ice sheet 
breaks into ice blocks, which then interact with each other and the structure. Modeling of the 
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ice-structure interaction process requires a numerical model, where the formation of the rubble 
pile and its interaction with both, the advancing ice sheet and the structure, are accounted for. 
Table 1 lists the simulation parameters, which we mostly chose after Timco and Weeks (2010). 

We ran three sets S1, S2 and S3 of 50 simulations summarized in Table 2. Within sets S1 and 
S2, all parameters, except the initial velocity perturbation v0, were constant. These simulation 
sets had a different value for the ice plastic limit σp in contact. Plastic limit σp describes the 
local ice crushing in contacts, but the model is not able to describe the continuous crushing of 
intact ice nor the extrusion of crushed ice. The simulations of set S3 were ran with a non- 
homogeneous ice sheet. In these simulations σp randomly varied between values 1 and 2 MPa 
within the sheet. All of the ice sheets of the simulations in S3 were unique, with σp varying 
after uniform distribution throughout the sheet. This was done by giving each discrete element 
of the ice sheet a random σp value. Simulations of S3 did not have an initial velocity 
perturbation; The potential stochasticity in the results of simulations in S3 thus arises from the 
non-homogeneity of the modeled ice.  

Figures 2a and b illustrate how the initial velocity perturbation affects the load records from 
the ice failure process in simulations of set S1. Here F is plotted as a function of 𝐿, the length 
of the ice sheet pushed against the structure. The load records show similar features, but they 
diverge after the first load peaks at around 𝐿 = 10 . . . 15 m. Figure 2b shows the maximum 
ice loads F p event for both of the simulations in Figure 2b. The F records between the 
simulated processes differ, which causes the values of F p and L at their occurrence to differ. 
Simulations of sets S2 and S3 yielded similar load records, and the discussion of this paragraph 
applies for them as well.  

Table 1: Summary of the main simulation parameters used in the 300 simulations of this 
paper. Ice thickness h and plastic limit σp were varied. Other parameters had the values given 

by the table in all simulations. The parameter values were mostly chosen after Timco and 
Weeks (2010). 

 Description and symbol  Unit Value or Range 
General Gravitational acceleration 𝑔 𝑚/𝑠) 9.81 
 Ice Sheet velocity 𝑣 𝑚/𝑠 0.05 
 Drag coefficient 𝑐+  2.0 
Ice Thickness ℎ 𝑚 1.25 
 Effective modulus 𝐸 𝐺𝑃𝑎 4 
 Poisson’s ratio 𝜈  0.3 
 Density 𝜌2 𝑘𝑔/𝑚4 900 
 Tensile strength 𝜎6 𝑀𝑃𝑎 0.6 
 Shear strength 𝜏6 𝑀𝑃𝑎 0.6 
Contact Plastic limit 𝜎9 𝑀𝑃𝑎 1.0-2.0 
 Ice-ice friction coefficient 𝜇22  0.1 
 Ice-structure friction coefficient 𝜇2;  0.1 

Water Density 𝜌; 𝑘𝑔/𝑚4 1010 
Structure Slope angle 𝛼 𝑑𝑒𝑔 70 
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Table 2: Summary of simulations sets S1-S3. Sets differed of simulations was 150. by the 
values of σp. Total number 

Set IDs 𝑛 ℎ 𝜎9 
   [m] [MPa] 
S1 1-50 50 1.25 1 
S2 51-100 50 1.25 2 
S3 101-150 50 1.25 𝑈(1,2) 

 
The data analyzed here consisted of above-described three sets of 50 simulations. If data from 
the 50 simulations were combined into a single graph, we would get a similar graph as in Figure 
2a for 2 simulations, but such a graph would not be informative. Since we have 50 load values 
for each time step from the 50 simulations in each set, we could calculate the mean ice load, 
standard deviation and maximum load for each time step. Figure 3 illustrates how these 
statistical measures for a given time step were obtained from the load records. In this way we 
define the mean load, standard deviation of the load, and the maximum load for each time step.  

 

 
Figure 2: Two ice load 𝐹 records from simulations of set S1: (a) 𝐹 plotted against length 𝐿 

of pushed ice and (b) two close-ups of the peak ice load F p events from the same two 
simulations. The 𝐹 records diverged after the 𝐿 = 10 . . . 15 meters of pushed ice. 
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Figure 3: Illustration on how the mean (mean), standard deviation (std) and maximum (max) 
ice load records were obtained: (a) Data from three time steps 𝑖 − 1, 𝑖 and 𝑖 + 1 from three 

artificial load records. (b) The derived statistics for these time steps. 

 

 
Figure 4: Peak ice load observations from simulation sets 1–3. Solid horizontal lines indicate 
set mean values and dashed lines are ± one standard deviation away from the mean. Results 

from set 3 with non-homogenous ice sheets are highlighted by gray background color. 

 

RESULTS AND ANALYSIS  

Figure 4 shows global peak ice load 𝐹9 values from all simulations used in the analysis. In 
the figure, the horizontal axis indicates the simulation ID and the vertical axis shows 𝐹9 value 
for each observation. In addition, the figure shows the mean values and standard deviations for 
the data points belonging to each set S1-S3. These mean values and the standard deviations are 
also summarized in Table 3, which additionally gives the coefficient of variation 𝑐H  (the 
standard deviation of a set divided by the corresponding mean value) values for all sets. Value 
of 𝑐H describes the variability in the underlying data set.  

As seen from Figure 4, the data points from the different sets fall onto same regime. The mean 
𝐹9 value for S2 (for which σp = 2 MPa) is slightly higher than for S1 (σp = 1 MPa), and the 
mean value for S3 falls between the means of sets S1 and S2. The figure together with the 
standard deviations of Table 3 indicate, the data set pair S1 and S3 are very similar. Same 
applies to pair S2 and S3. The similarity in the data sets is also indicated by the values of the 
𝑐H, also given in the table. They all are about equal. These statistical figures do not allow us to 



POAC17-112 

distinguish the data set yielded by the simulations with non-homogenous ice sheet from those 
yielded by homogenous sheet.  

In addition to these features, also the distributions of the peak load data were very similar as 
shown by Figures 5a and b. The figures, respectively, show the relative frequencies of the peak 
load 𝐹9 observations, sorted here into 10 equally sized bins, and the empirical cumulative 
distribution functions for 𝐹9 values. The figures show that the distributions for sets S1-S3 
clearly follow very similar trends, and in fact, the histograms of Figure 5a are even difficult to 
tell apart. We did not attempt to look for the best fitting distribution for the data sets in the 
histogram of Figures 5a, but the shape of the histogram indicates them to be non-normal (Ranta 
et al., 2017b).  

Table 3: The mean of global peak loads 𝐹9 values, their standard deviations (std), and the 
coefficients of variation (𝑐H) for the simulations of all sets S1-S3. 

Set Mean(𝐹9)[kN/m] std(𝐹9)[kN/m] 𝑐H[-] 

S1 670 150 0.22 

S2 770 190 0.25 

S3 730 170 0.23 

 

 
Figure 5: Relative frequencies (a) of peak loads from simulation data sets 1–3 and empirical 

cumulative distribution functions (b) of the same data sets. 

We can also compare the so-called concurrent statistical values from the different processes, 
that is, the statistics of load F values from the same time step of the different simulations. The 
derivation of these time-step-wise statistical figures was described above (see Figure 3). 
Figures 6a-c show comparisons for the mean load, for the standard deviation, and for the 
maximum load, respectively. Left column of the figure depicts comparisons of loads between 
simulation S1 and S3 and the right column between simulation sets S2 and S3. The x- and y-
coordinates of each data point are, respectively, defined by the value of a given statistical figure 
from the sets S1-S3 given as the label of x- and y-axis. If the data sets matched one-to-one, all 
of the data points would fall on the diagonal also shown in the plots.  
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Figures 6a-c illustrate that the concurrent load values from the different sets of 50 simulations 
do not show any dependency of the set: all of the point clouds are virtually symmetrical about 
the diagonal. The same is shown by the coefficient of determination R2 values, which the 
graphs of the figures also show. While R2 has a high value in the case of the mean load (the 
points lye close to the diagonal) the more spread out data in rest of the plots do not indicate 
any set-depended correlation in the data R2 (very low R2).  

Different gray-scale levels in graphs of Figures 6a-c indicate the process stage from where the 
data point is from. Lightest color stands for the early process stage (small L) and the black 
color denotes the final stage (L = 250 m). Gray-scale levels in the figure demonstrate that mean, 
standard deviation and maximum (of concurrent load values) tend to be increase throughout 
the simulations. Plots in Figure 6c also demonstrate the earlier finding (Kujala et al., 2009; 
Suominen and Kujala, 2014; Ranta et al., 2017a) on the variation in the data increasing with 
the increasing load values. This is indicated by the wider spread in the cloud of data points for 
maximum load with the high than with the low maximum load values.  

 

CONCLUSIONS  

We performed 2D combined finite-discrete element method (FEM-DEM) simulations on ice- 
structure interaction process for studying the reasons behind the stochasticity of ice loads. The 
study based on three sets of 50 simulations, two sets with homogenous ice and one with 
nonhomogeneous ice. No clear set-dependency was found. In all of the cases load values were 
stochastic throughout the process. The stochastic nature of ice loads can be thus partly due to 
non-homogeneity of sea ice, but it can as well arise from the ice-structure interaction process 
itself; The ice-structure interaction process is itself a stochastic process. Understanding the 
sources for the stochasticity can be used to increase the accuracy of ice load estimates.  
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Figure 6: Comparison of concurrent mean (a), standard deviation (b) and maximum (c) load 
observations between simulations sets 1 and 2 (left column) and between simulation sets 2 
and 3 (right column). Coefficients of determination R2 are shown with 2 significant digits. 
Lightest colors stand for the early process stage (small L) and the black color the final stage 

(L = 250 m). 
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