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Abstract 

Global warming by excessive carbon emission has made the earth’s temperature increasing. It 

has led to worldwide climate changes and even unexpected natural disasters. On the contrary 

to those troubles, shipping and oil companies take the unfavorable conditions into new 

business chances to extend their business range because the rising temperature opens new 

money-making opportunities around the arctic area. This study’s purpose is to develop an 

effective and reliable ice navigation algorithm for arctic sea route. We employ genetic 

algorithm to find an optimal navigation path in the ice infested environment. The algorithm 

was tested on an arctic area map constructed from the ice prediction model, which consists of 

longitude, latitude, ice thickness, ice concentration, and terrain elevation data. The simulation 

result provides an economical and safe route within a reasonable computation time. 

 

1. Introduction 

Since the global temperature started to rise by dramatic greenhouse gases’ increase, the Arctic 

summer sea ice has been reduced very rapidly. In general, global warming is an unfavorable 

symptom which induces climate changes and following natural disasters. On the other hand, 

decrease in summer sea ice is opening a new shipping path crossing the arctic sea area. 

Compared with the existing shipping route between the Far East and Europe, the sea routes 

through the arctic area let the shipping distance be enormously less, resulting in the reduction 

of CO2 emission as well. In this situation, the ice navigation system which guides ships to 

more economical and safer paths is considered as one of the most important systems to take 

this opportunity. 

 

There were many researchers studying efficient route-searching problems for ships [1-4]. 

Their main focus was to find an economical path avoiding collisions on the sea surface. 

However, the research, considering ice-covered environment, has just started and only several 

papers have been published. I. H. Park designed the ice navigation algorithm for the Northern 

Sea Route shipping, using the Dijkstra’s algorithm which is one of the graph search 

algorithms [5]. However, his model did not consider the ice model and the algorithm only 



searched the optimal path within limited nodes, using the historical data of them. In [6], the 

authors did the practical research which was tested at Baltic sea area. In their research, they 

integrated three models (ship transit model, ice model, and optimization model) to construct 

an ice navigation system. When they employed the optimization method, three methods were 

considered for the route optimization and the Powell’s method was used because of its fast 

computation time. However, it has a critical problem which is that the Powell’s method does 

not allow to escape from a local minima whereas its searching time is short.                                                                                                                                                                                                                                                                                                                   

 

To tackle the problems, we designed a suitable genetic algorithm (GA) for the ice navigation 

system and verified its performance. Usually, the Genetic Algorithm is a well known 

optimization approach as a powerful tool since it can be applied to diverse science and 

technology fields and it provides a reasonable result while it is slow to converge to an optimal 

solution. The GA, we suggested for the ice navigation system, has two main advantages: 1) to 

overcome the limitations the graph search algorithms have, 2) to have high possibility of 

searching an optimal solution. In addition, the algorithm’s slow converge speed can be 

improved with special operators such as ‘Deletion’ and ‘Repair’ operators.  

 

2. Modeling 

 

For the path planning, the map structure and variables should be defined. In our work, two 

types map structures, 1) discrete 2) continuous, are employed. The discrete type only 

considers integer points as candidate nodes. It is the raw data from the ice prediction model 

which generates a grid type map where each cell contains ice information and geographical 

information. Second, continuous type is generated by interpolating the discrete type. This 

type of structure makes it possible to find more delicate paths than discrete type, since there 

are more possible candidate nodes in every cell. The maps have two types of obstacles, 1) 

static 2) dynamic. Whether a point is feasible or not (intersected by obstacles) is determined 

based on the information which the point includes. The goal of our work is to find an 

economical path which is constructed with sequential nodes where each node includes x, y 

coordinates, velocity and feasibility information [10]. Here, the economical path means that 

total distance, smoothness of the path, and traveling time are optimized and balanced. Of 

course, the path should be safe. The factors, described above, are variables in our model and 

they are named Tdistance, Tsmooth, Ttime, and Tclearance. More detailed descriptions of our 

model will follow. 

 

2.1 Objective function 

An objective function is very significant to an optimization problem because it guides the 

direction of the algorithm. In our problem, the objective function considered four factors of a 

path. The first factor is Tdistance. Here, the Tdistance means a total distance of all linkages in 

a path. The second factor is Tsmooth. It indicates a mean angle in the path. The third factor is 

Ttime which is a total required time to travel from the first node to the last node. And the 

final factor is clearance. It reflects safety of the path. When a path is passing infeasible areas, 

the evaluation function of the chromosome would impose a penalty value on the Tclearance 

value. 

 

 

 

 

 



Min 

Z = w1 × Tdistance  +  w2 × Tsmooth  +  w3 × Ttime  +  w4 × Tclearance  (1) 

 

Where 

Tdistance : Summation of distances between each node. 

Tsmooth : Average of angle among three sequential nodes 

Ttime : Summation of travel time between each node. 

Tclearance : Checking observance of safety distances from obstacles. 

 

 
Fig. 1. An example path on the map. 

 

Fig. 1 shows an example path on the map the algorithm was applied for. Each cell contains 

ice information (thickness and concentration) and geographical information (altitude, 

longitude, latitude). The information in the cell represents the environmental characteristics 

of the cell. In our work, we considered the grid map is continuous. Usually, an ice model 

generates the grid type of the map which is likely to consist of huge size of cells. In our work, 

the resolution was 20 km × 20 km. When it comes to the size of the cell, only considering 

integer points as the candidate nodes has a limitation to generate detail routes. For this reason, 

we modeled the environment to be continuous by interpolation and applied the suggested GA 

in the environment.  

Fig. 2 is an example to explain the environment. If there is a node 𝑛𝑘 , it would be 

surrounded by four integer points and the points would have the information which represents 

a cell. In this situation, the environmental characteristic of the node 𝑛𝑘 is affected by the 

characteristics of the four points. When it comes to influence, we employed the invert 

distance weighting method which means the longer distance is the lesser influence to the 

node 𝑛𝑘 . For example, the node 𝑛𝑘 in Fig. 2 is affected by four surrounding nodes, 

(i, j), (i + 1, j), (i, j + 1), and (i + 1, j + 1). Among those points, the node 𝑛𝑘 is closest to 



(i + 1, j) so that the environmental property of 𝑛𝑘 is mainly subject to the point (i + 1, j). 

 
Fig. 2. An example node to describe interpolation 

 

The first factor, Tdistance, is ∑ 𝑑𝑖
𝑛−1
𝑖=1  in the Fig. 1, where n is the number of node in a path. 

For the calculation of the distance between two nodes, the latitude and longitude information 

is used under the assumption the earth is a perfect spherical shape. The second factor, 

Tsmooth, is the mean angle so that it is 
∑ 𝜃𝑖

𝑖=𝑛−1
𝑖=2

𝑛−2
. This value describes the smoothness of the 

path. And, the third factor, Ttime, is the travel time from 𝑛1 to 𝑛𝑘 which depends on two 

factors: the velocity and the distance between the nodes. In our work, we assumed that the 

velocity is in inverse proportion to the ice effective thickness of the path so that the velocity 

of an arc is determined between open water speed and the speed in the maximum ice breaking 

environment of the ship. The final factor, Tclearance, is to check the feasibility of a path. Here, 

the feasible path means it does not go past dangerous areas where the ice thickness is over 

capability of ice breaking or the water depth is shallow.  

 

2.2 Constraints 

Two main constraints are considered in this problem. The first constraint is that all nodes 

should be in the boundary of the map. Therefore, all coordinates of newly generated nodes or 

of the modified nodes should be within the range of the map boundary. Second, the ship 

should not sail on infeasible areas (obstructs) where the obstacles are classified as two types 1) 

static obstructs, 2) dynamic obstacles. Usually, the water level conditions are relevant in the 

static obstacles and the ice conditions are relevant in the dynamic obstacles. For example, the 

infeasible area occurs when an ice thickness value of a node, composing a path, is over the 

ship’s icebreaking capability or the water depth is lower than a certain level. In this paper, a 

water depth below 10 m was chosen as the water depth constraint. 

 

E = {(x, y) ∈  𝑅2 ∶ a ≤ x ≤ b, c ≤ y ≤ d}      (2) 

SF(t) = E − 𝑈𝑗=1
𝑘 𝑂𝑠𝑡𝑎𝑡𝑗

− 𝑈𝑗=𝑘+1
𝑙 𝑂𝑑𝑦𝑛𝑗

(t)      (3) 

 

where 

E is the boundary of the environment. 

SF(t) is the safety area (anti-collision). 

[a, b] is x boundary of map. 



[c, d] is y boundary of map. 

Ostat𝑗
(𝑗 = 1,… , 𝑘) is on-land area. 

𝑂𝑑𝑦𝑛𝑗
(𝑡) is the area where the ice effective thickness is over the ship’s ice breaking 

capacity.  

 

3. Methodology 

 

3.1 Genetic algorithm 

To search the economical path, this paper employs the genetic algorithm (GA) which is one 

of the most famous meta-heuristics based on a population method. A genetic algorithm is a 

heuristic solution-search and an optimization technique, originally motivated by the principle 

of evolution through (genetic) selection [7]. The GA makes it possible to search a global 

optimum solution escaping from local optima and it is a robust method which can be applied 

for a wide range of complex practical problems in science and engineering fields. However, it 

is debatable whether GA is suitable for path planning or not, since GA is time-consuming and 

in some case, it is terminated before solutions reaches an optimal solution. To tackle the 

problem, researchers have introduced modified GA. J. Grefenstette employed Random 

Immigrant (RI) which changes environment to prevent rapid convergence of solutions by 

replacing a fixed percentage of population with newly generated chromosomes [8]. Ahmed, 

Hussenin, and Shawki devised a dynamic planner. The dynamic planner controls the ratio of 

RI and mutation to avoid early matured convergence when the solution improvement rate is 

slow [9]. Furthermore, they introduced repair and smooth operators which helps to improve 

GA application for path planning. Those operators increase convergence speed of GA. As 

mentioned above, a GA has both advantages and disadvantages. In this paper, we employed 

the GA for the path planning problem because of it’s ability to follow the shortest path unlike 

grid boundary mapping constraints of Graph Search Algorithm s (GSA) such as A* algorithm 

and Dijkstra algorithm. For example, the number of available candidate node in a cell is 

different. In GSA, the number of node in a cell is fixed because possible nodes should be 

prefixed before the computation; on the other hand, there can be countless candidate nodes in 

the cell under the continuous environment. This is because the nodes in the path are generated 

while the computation is carried out. Fig. 3 describes an example case. 

 

    
 

Fig. 3. The number of available candidate node in a cell 

 

Because of the characteristic, the GSA and GA would have different feasible solution area 

which each algorithm can generates. Fig. 4, 5 describe example cases in each algorithm.  

 

  



 
Fig. 4. Available path in GSA                   Fig. 5. Available path in GA 

 

3.1.1 Chromosome structure 

For a GA, how to represent a chromosome is the most important. In our work, a path is 

considered a chromosome and each gene, constructing a chromosome, consists of x, y 

coordinates, velocity and feasibility variables. This structure [Fig. 2] was mentioned by 

Roman Smierzchalski [10]. To generate an initial population, all values of a node, except for 

the first and last node, are given randomly within a feasible area. Also, the number of node in 

a path is decided by a random number; however, as a generation goes by, the size of a path 

can be increased or decreased by a fitness function. 

 

 
Fig. 6. Chromosome structure 

 

3.1.2 Operators 

In this paper, five genetic operators, which are crossover, mutation, reproduction, repair, and 

random immigrant (RI), were employed for the GA. The detail description about the 

operators would be explained below. 

 

3.1.2.1 Crossover 

Crossover operator is to generate child chromosomes by exchanging some parts of their 

parents chromosomes [11]. The main function of this operator is to generate qualified new 

chromosomes, believing qualified parents bear qualified their children. As the evaluation 

function filters poor quality parents, next population tends to consist of better chromosomes 

than previous populations. Various types of crossover operators have been proposed and 

implemented. In the typical ways, there are one-point crossover, two-point crossover, multi-

point crossover, and uniform crossover. In this work, an one-point crossover was employed. 

 



 
Fig. 7. One point crossover operator description [13] 

 

3.1.2.2 Mutation 

Mutation operator makes it possible to escape from a local optimality through a transition 

from a current solution to its neighborhood [11]. In our work, the operator was implemented 

by changing a node in a path into the other node not in the path. 

 

 
Fig. 8. Mutation operator description [13] 

 

3.1.2.3 Reproduction 

Reproduction operator enables the most qualified chromosomes among the previous members 

to survive with pre-assigned probability. They are evaluated and sorted with newly created 

child chromosomes. If the ratio of reproduction operation is high, the global optima searching 

capability becomes low so that the ratio should be carefully determined by design of 

experiments. 

 

3.1.2.4 Repair 

Repair operator makes an infeasible connection between two nodes to be feasible connection. 

The operator replaces an infeasible node in the path with a new feasible node near the node. 

 

 
Fig. 9. Repair operator description [13] 

 

3.1.2.5 Deletion 

Deletion (smooth) operator improves the path by eliminating unnecessary nodes. For example, 

a middle node in three sequential nodes would be deleted if the quality of the path which only 

consists of first and third nodes is better than the quality of the original path which consists of 



first, second, third nodes. It makes the path smoother and simpler. 

 

 
Fig. 10. Deletion operator description [13] 

 

3.1.2.6 Random Immigrant 

Random Immigrant (RI) is an operator which generates new chromosomes and replaces bad 

chromosomes in the population with the newly generated chromosomes [5]. This operator 

strengthens GA’s global searching capability but weakens its convergence capability. 

 

3.1.4 Dynamic planner 

Dynamic planner controls the ratio of operators’ performance probability. The proportion of 

RI and mutation among operations is changed depending on the convergence speed. For 

example, it decreases a crossover ratio and increases mutation and RI proportion to escape 

from the local area, when the convergence speed is slow. 

 

  



3.2 Procedure 

The suggested GA follows the procedure [Fig. 11]. The dynamic planner controls the 

selection ratio of mutation and RI, based on the improvement rate of the generations. Here, 

we considers RI as an operator of the GA, not the element of the dynamic planner. 
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Fig. 11. Genetic algorithm procedure 

 

 

 

  



3.3 Reference ship and Ship’s speed in the ice-covered area 

For the implementation, we employed a reference ship from The Northern Sea Route [12]. 

The ship is an icebreaking bulk/container ship. A detail specification of the ship is described 

below. 

Table 1. Reference ship description 

 
 Feature 

 

Ship type 

Length(Lpp) 

x beam (B) 

x draft (m) 

 

Cargo tonnage 

(metric tons) 

Normal shaft 

Horsepower 

(MW) 

Speed in 

open water 

(knots) 

Icebreaking 

capability 

(m) 

Route 

40,000 Dwt 

Icebreaking 

bulk/contain

er ship 

186.1 x 27.5 

x 12.5 
36,000 28 14.5 

1.85 m at 

1.0 m/sec 
Northerly route 

 

From the Table 1, we could set the maximum speed and the minimum speed of the ship in the 

simulation. Within the available ice thickness range, the ship speed was considered as a linear 

relationship in the simulation. Fig. 12 describes the relationship between ice resistance and 

ice thickness [15]. In fact, it is not perfect linear relationship but we could get insight that the 

ice resistance is proportional to ice thickness from Fig. 12. Since only fixed ship’s speed is 

considered, it is not needed to consider the relationship between ship’s velocity and ice 

resistance. To take into account the ice concentration information, ice effective thickness 

information (ice thickness × ice concentration) was employed, instead of ice thickness. For 

example, if an ice effective thickness value in a grid is lower than 1.85 m, the speed of the 

reference ship was calculated by interpolation between 14.5 knot and 1.9438 knot (1.0 m/sec); 

otherwise, the grid was considered as an obstacle which imposed a penalty by the fitness 

function when the path was evaluated. 

 

 

 
Fig. 12. The relationship between Ice resistance and Ice thickness with Kashteljan’ eq [15] 

 

 

 

 



3.4 Ice distribution map 

We employed an Ice-POM numerical model to generate the ice distribution map for the 

simulation. The Ice-POM model is an ice ocean coupled model and the ocean part is based on 

Princeton Ocean model. Ice part is based on EVP (elastic viscous plastic rheology) and it 

takes account of floe collision and 0 layer thermodynamics model. This model was developed 

from Yamaguchi’s laboratory in the University of Tokyo [14]. The map generated from the 

Ice-POM model is constructed based on grid cells. Fig. 13 is the 2003-Aug-01 snapshot from 

the model. In the map, the number of grid cell is 244 × 253, and the size of each grid is 

about 20 km × 20 km. Each cell contains ice information (thickness and concentration) and 

geographical information (altitude, longitude, latitude). In this problem, obstacles are subject 

to the level of ice effective thickness (ice thickness × ice concentration) and the level of 

altitude. To distinguish feasible region, we used color image scale. The ice effective thickness 

level is given by a color scale and it goes from 0mto 6𝑚 in steps on 0.5𝑚.  

 
Fig. 13. The map generated by the ice model  

: Ice thickness in shown in different colors, see the vertical bar 

 

3.5 Parameter set 

The performance of a GA significantly relies on how parameters are set. There are several 

parameters for the GA. First, population size is the number of chromosomes in a generation. 

As a population size increases, it increases the possibility of avoiding a local optima, but 

computation time also increases rapidly at the same time. In addition, the operators ratio has a 

significant effect on the result of implementation. Each operator has its own function. For 

example, Crossover makes the chromosomes converge and Mutation makes it possible to 

escape from a local optima. However, if the ratio of Crossover is too high, it is likely to 

converge on local optima; on the other hand, if the ratio of Mutation is too high, it is likely to 

diverge. For those reasons, to set a proper parameter ratio is important, and it should be 

decided carefully. We chose a parameter set through numerical trials.  

 

 

 



Table 2. Parameter set for the experiments 

 

Parameter set 

Population size 80 

Termination 

criteria 

No increase within 100 iterations 

or over 1000 iterations 

Initial operators 

ratio 

Crossover (50%) 

Mutation (37.5%) 

Deletion (6.25%) 

Repair (6.25%) 

 

Result 
 

We measured the algorithm performance in two cases 1) continuous environment with 

interpolation, 2) discrete environment without interpolation. Despite the concern that the 

convergence speed in continuous condition would be slower in comparison to discrete 

condition as it has more alternatives, the algorithms reached an optimal solution at the similar 

iteration [Fig. 14, 15]. In the figures, the objective value was the result from the equation (1) 

at every iteration. Here, the weight factors of the four components (distance, smooth, time, 

and clearance) in the equation have scaled values by numerous experiments to find more 

reasonable solution. From the experiments, we could get a weight factor set (0.8, 15, 10, and 

2000). The objective function equation is described in the section 2.1. 

 

 
Fig. 14. Objective value decrease in the discrete case. 

 

 



 
Fig. 15. Objective value decrease in the continuous case. 

 

When it comes to the solution quality, the better solutions were found on the continuous 

condition [Fig. 16, 17]. Here, we set the start node (120, 222) and the end node (10, 60) 

because it is difficult to find feasible routes between the nodes. In each case, the detailed 

solution information is described in Table 3. 

 

 
Fig. 16. The optimal path on the discrete environment 

 

 

 



 
Fig. 17. The optimal path on the continuous environment 

 

Table 3. The comparison table between discrete condition and continuous condition 

 

 Discrete Continuous 

Optimal path (120, 222) → (89, 194) → (87, 184) → 

(78, 171) → (67, 158) → (60, 96) → 

(10, 60) 

(120, 222) → (94.3, 194.9) → 

(83.3, 181.1) → (70, 163.6) → 

(66.9, 161) → (60.8, 94.4) → 

(10, 60) 

Total distance 9041.42 km 8428.87 km 

Total time 314.095 hour 290.419 hour 

Average angle 23.634   29.386   
Total clearance 0 0 

 

Conclusion 

Path planning problem in an ice covered environment has been getting important at issue. To 

tackle the problem, the genetic algorithm was employed since it is a powerful to search a 

global area and suitable on the continuous map. Before the application, we modified the 

discrete map generated from the ice model into the continuous map by invert distance 

weighting method. In the continuous environment, the suggested algorithm generated 

reasonable solutions within a reasonable time. However, this study has several limitations. 

The map was static, not dynamic and stochastic. Thus, the next research will be carried out 

by the following two steps 1) the algorithm will perform on the dynamic environment. In the 

step, the sea ice behaves differently as time passed by so that the speed of the ship becomes 

an important factor, 2) next research will take uncertainty into account by introducing a 

stochastic model, the behavior of sea ice is not deterministic; therefore, the sea ice should be 

considered as an uncertain element. The stochastic model would be more practical and safer 

than the previous deterministic models. The other limitation is the GA does not ensure the 

optimality. To tackle this, we are planning to combine advantages of both a GA and a GSA by 

inserting some designed solutions in the initial population of the GA, such as the solutions 

from the GSA. 
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